Collider Signatures of Heavy Quarks

Anupama Atre University of Wisconsin - Madison

arXiv:0706.xxxx - AA, Marcela Carena, Tao Han, Jose Santiago

arXiv:0706.xxxx - Kaustubh Agashe, AA, Tao Han

Outline

- Introduction of heavy quarks
- Motivation
- Signal and Background
- Current constraints
- Future analysis
- Conclusion

What we study

Generic heavy quarks with arbitrary couplings
 LH only, RH only and both

$$\mathcal{L} \propto k_{\ell} \frac{g}{2\sqrt{2}} (1 - \gamma_5) + k_r \frac{g}{2\sqrt{2}} (1 + \gamma_5)$$

- D_i : charge -1/3 heavy quarks that mix with SM quark of i^{th} generation
- U_i : charge 2/3 heavy quarks that mix with SM quark of i^{th} generation
- Study both CC and NC processes for Tevatron and LHC
- Preliminary studies presented here for CC interactions of D_I (with LH couplings only) at the Tevatron

Warped extra dimensions

- Extend bulk gauge symmetry to custodially symmetric $SU(2)_L \times SU(2)_R$ Agashe, Delgado, May, Sundrum
 - KK excitations of gauge bosons ~ few TeV
 - $SU(2)_R$ symmetric partners of RH quarks are light
- Custodial symmetry plus *L-R* symmetry protect b coupling
 - Bidoublets

Agashe, Contino, Da Rold, Pomarol

- Higgs propagating in bulk Gauge Higgs Unification model
 - Based on $SO(5) \times U(1)_X$ to $SU(2)_L \times SU(2)_R \times U(1)_X$ on IR brane and $SU(2)_L \times U(1)_Y$ on UV brane Carena, Ponton, Santiago, Wagner
- Warped GUTs

Agashe, Servant

• etc.

We study generic heavy quarks!

Signal Process: Production

QCD pair production vs Electroweak single production

Signal Process: Decay

$$pp/p\overline{p} \rightarrow qD_1 \rightarrow quW \rightarrow qu\ell V$$

$$\ell = \mu$$
 only

- Both D_1 and \overline{D}_1 considered
- Full spin correlation maintained
- Tevatron, $E_{cm} = 1.96 \text{ TeV}$

Signal: $2j + \mu + E_T$

Background Processes

Main Background:

QCD processes
$$p\overline{p} \rightarrow 2j + W^{\pm} \rightarrow 2j + \ell^{\pm} + \nu$$

Other Background:

EW processes
$$p\overline{p} \rightarrow Z + W^{\pm} \rightarrow 2j + \ell^{\pm} + \nu$$

$$p\overline{p} \rightarrow t + b \rightarrow W^{\pm}bb \rightarrow 2j + \ell^{\pm} + \nu$$

Cuts

Basic Cuts:

Smearing:

Energy resolution parameterized by: $\frac{\Delta E}{E} = \frac{a}{\sqrt{E}} \oplus b$

ECAL:
$$a = 13.5\%$$
 $b = 1.5\%$

HCAL:
$$a = 75\%$$
 $b = 3\%$

Improved Cuts:1

$$p_T(j_2) > \frac{m_{D_1}}{4}$$

Signal efficiency: ~83 to 90%

Background efficiency: ~ 0.1 to 14%

Improved Cuts: 2

$$\Delta R_{jj} > 1.5$$

$$\Delta R_{i\ell} > 0.8$$

Signal efficiency:

~ 93 to 95%

Background efficiency:

~ 68 to 80%

Improved Cuts: 3

 $0.5 < |\eta(j_1)| < 3.0$

Signal efficiency: ~85 to 96%

Background efficiency:

~ 64 to 72%

Improved Cuts: 4

$$m_{D_1} - \frac{1}{4} m_{D_1} < m_T(j_2 W)$$

$$m_{D_1} + \frac{1}{4} m_{D_1} > m_T(j_2 W)$$

Signal efficiency:

~ 78 to 97%

Background efficiency:

~ 3 to 56%

Improved Cuts

$$p_T(j_2) > \frac{m_{D_1}}{4}$$

$$0.5 < |\eta(j_1)| < 3.0$$

$$\Delta R_{jj} > 1.5$$

$$\Delta R_{j\ell} > 0.8$$

$$\Delta R_{jj} > 1.5$$
 $m_{D_1} - \frac{1}{4} m_{D_1} < m_T(j_2 W)$

$$\Delta R_{j\ell} > 0.8$$
 $m_{D_1} + \frac{1}{4} m_{D_1} > m_T(j_2 W)$

Current Constraints

- Searches for fourth generation
 - Limits on b are around 300 GeV from $1 fb^{-1}$ data
 - Limits are from $b \rightarrow b Z$ mode
 - No b `→Wj mode analysis available
- Searches for $W^{\pm}H(or X) \rightarrow l \ v \ 2\bar{j}$
 - Limits on $\sigma.BR(H(or X) \rightarrow bb)$
 - Translate limits to our case $\Rightarrow m_{DI} > 100 \text{ GeV}$

http://www-cdf.fnal.gov/physics/exotic/exotic.html

- Limits from on a t ($\rightarrow Wb$) are 265 GeV with about 1 fb^{-1}
 - Applicable for third generation(b), results here for D_1

http://www-cdf.fnal.gov/physics/new/top/top.html

Further analysis in progress

- Consider RH couplings and generic LH + RH scenarios
- Electron as well as muon channel
- Heavy quarks that mix with second and third generations
- Study sensitivity at the LHC
- NC process $2j + l^+ l^-$ channel.

Better efficiency - two leptons

Better reconstruction - no missing energy

Conclusions

- Considered single production of heavy quarks with arbitrary coupling
- Single production has enhanced sensitivity compared to QCD pair production
- Can probe heavy quark mass up to 800 GeV at the Tevatron
- Heavy quarks can be found in many new physics scenarios
 Example: Light Kaluza-Klein quarks in Randall-Sundrum models with custodial symmetry

We can still discover new physics at the Tevatron!

Supplementary Slides BrookHaven Forum 2007 May 2007

Improved Cuts

$$p_{T}(j_{2}) > \frac{m_{D_{1}}}{4} \qquad \Delta R_{jj} > 1.5 \qquad m_{D_{1}} - \frac{1}{4} m_{D_{1}} < m_{T}(j_{2}W)$$

$$0.5 < |\eta(j_{1})| < 3.0 \qquad \Delta R_{j\ell} > 0.8 \qquad m_{D_{1}} + \frac{1}{4} m_{D_{1}} > m_{T}(j_{2}W)$$

$$0.01 = \frac{200 \text{ GeV}}{400 \text{ GeV}}$$

$$0.001 = \frac{200 \text{ GeV}}{m_{T}(j_{2}W) \text{ (GeV)}} = \frac{60}{600}$$

Example: warped extra dimension

- Warped extra dimension models address gauge hierarchy problem
- Background geometry a slice of AdS space with curvature scale *k*
- Due to AdS warping exponential hierarchy between mass scales at two ends of extra dimension generated
- Original set up all SM fields are localized on IR brane
- Leads to large FCNC and proton decay
- SM fields propagate in the bulk and Higgs localized on IR brane attractive mechanism for Yukawa structure and prevents excessive FCNCs.
- Constraints from precision electroweak data

- Extend bulk gauge symmetry to a custodially symmetric $SU(2)_L \times SU(2)_R$
- Reduces tree level contribution to T parameter
- Gauge bosons with masses $\sim 3 \ TeV$
- RH quarks included in doublets under $SU(2)_R$ symmetry
- $SU(2)_R$ symmetric partners can be very light (RH top)
- This mode mixes with bottom quark and induces corrections to *Zbb* coupling
- Strong constraints on these models

Agashe, Delgado, May, Sundrum

- Gauge-Higgs Unification Higgs field is a pNGB that arises as component along extra dimensions of gauge fields of broken symmetries
- Higgs field corresponds to zero mode of A_5 gauge boson along the broken direction of SO(5)/O(4)
- $SO(4) \times U(1)_X$ broken to $SU(2)_L \times SU(2)_R \times U(1)_X$ on IR brane and $SU(2)_L \times U(1)_Y$ on UV brane.
- Light higgs and light fermions predicted

Carena, Ponton, Santiago, Wagner

$$\xi_{1L}^{i} \sim Q_{1L}^{i} = \begin{pmatrix} \chi_{1L}^{u_{i}}(-,+) & q_{L}^{u_{i}}(+,+) \\ \chi_{1L}^{i}(-,+) & q_{L}^{i}(+,+) \end{pmatrix} \oplus u_{L}^{i_{i}}(-,+) ,$$

$$\xi_{1L}^{i} \sim Q_{1L}^{i} = \begin{pmatrix} \chi_{1L}^{u_{i}}(-,+) & q_{L}^{u_{i}}(+,+) \\ \chi_{1L}^{i}(-,+) & q_{L}^{i}(+,-) \\ \chi_{1L}^{i}(-,+) & q_{L}^{i}(+,-) \end{pmatrix} \oplus u_{L}^{i}(-,+) ,$$

$$\xi_{2R}^{i} \sim Q_{2R}^{i} = \begin{pmatrix} \chi_{2R}^{u_{i}}(+,-) & q_{R}^{i}(+,-) \\ \chi_{2R}^{i}(+,-) & q_{R}^{i}(+,-) \\ \chi_{2R}^{i}(-,+) & q_{R}^{i}(-,+) \\ \chi_{2R}^{i}(-,+) & q_{R}^{i}(-,+) \\ \chi_{3R}^{i}(-,+) & q_{R}^{i}(-,+) \end{pmatrix} \oplus u_{L}^{i}(-,+)$$

$$\xi_{3R}^{i} \sim T_{1R}^{i} = \begin{pmatrix} \psi_{R}^{i}(-,+) \\ \psi_{R}^{i}(-,+) \\ \psi_{R}^{i}(-,+) \\ \psi_{R}^{i}(-,+) \end{pmatrix} \oplus T_{2R}^{i} = \begin{pmatrix} \psi_{R}^{i}(-,+) \\ \psi_{R}^{i}(-,+) \\ \psi_{R}^{i}(-,+) \\ \psi_{R}^{i}(-,+) \end{pmatrix} \oplus Q_{3R}^{i} = \begin{pmatrix} \chi_{3R}^{u_{i}}(-,+) & q_{R}^{iu_{i}}(-,+) \\ \chi_{3R}^{i}(-,+) & q_{R}^{iu_{i}}(-,+) \\ \chi_{3R}^{i}(-,+) & q_{R}^{iu_{i}}(-,+) \end{pmatrix}$$

$$ui \text{ and } u'i \text{ singlets } i-1,2,3 \text{ generations} i-1,2,3 \text{ gene$$

 Q_i bidoublet under $SU(2)_I \times SU(2)_R$ $SU(2)_{i}$ vertically, $SU(2)_R$ horizontally T_1 and T_2 transform as (3,1) and (1,3) under *i-1,2,3* generations

- 16 of SO(10) with extra states assigned (-+) BC
- One 16 of SO(10) for each SM: $Q_L (u_L, d_L)$, $u_R, d_R, L_L = (e_L, v_L)$, e_R, v_R
- One component of $SU(2)_R$ has zero mode other dos not split $SU(2)_R$ components. Similarly for leptons.

$$\mathbf{16_{u_R}} = \begin{pmatrix} u_R \\ \tilde{d}_R \\ e'_R \\ \nu'_R \\ L'_L \\ Q'_L \end{pmatrix}, \mathbf{16_{d_R}} = \begin{pmatrix} \tilde{u}_R \\ d_R \\ e'_R \\ \nu'_R \\ L'_L \\ Q'_L \end{pmatrix}, \mathbf{16_{e_R}} = \begin{pmatrix} u'_R \\ d'_R \\ e_R \\ \tilde{\nu}_R \\ L'_L \\ Q'_L \end{pmatrix}, \mathbf{16_{\nu_R}} = \begin{pmatrix} u'_R \\ d'_R \\ \tilde{e}_R \\ \nu_R \\ L'_L \\ Q'_L \end{pmatrix}, \mathbf{16_{Q_L}} = \begin{pmatrix} Q_L \\ L'_L \\ u'_R \\ d'_R \\ e'_R \\ \nu'_R \end{pmatrix}, \mathbf{16_{L_L}} = \begin{pmatrix} Q'_L \\ L_L \\ u'_R \\ d'_R \\ e'_R \\ \nu'_R \end{pmatrix}$$

Agashe, Servant

- Custodial symmetry with discrete *L-R* symmetry can protect *Zbb* coupling
- Bidoublets under $SU(2)_L \times SU(2)_R$
- Consistent with precision EW data
- Gauge bosons with masses accessible at LHC

Agashe, Contino, Da Rold, Pomarol